Используйте поиск по шпаргалкам:

Google
 

Особенности античной науки. Античная логика и математика.

Античная философия продемонстрировала, как можно планомерно развертывать представление о различных типах объектов и способах их мысленного освоения. Она дала образцы построения знаний о таких объектах. Это поиск единого основания (первоначал и причин) и выведение из него следствий (необходимое условие теоретической организации знаний). Эти образцы оказали бесспорное влияние на становление теоретического слоя исследований в античной математике.

греческий полис принимал социально значимые решения, пропуская их через фильтр конкурирующих предложений и мнений на народном собрании. Преимущество одного мнения перед другим выявлялось через доказательство, в ходе которого ссылки на авторитет, особое социальное положение индивида, предлагающего предписание для будущей деятельности, не считались серьезной аргументацией. Диалог велся между равноправными гражданами, и единственным критерием была обоснованность предлагаемого норматива. Этот сложившийся в культуре идеал обоснованного мнения был перенесен античной философией и на научные знания. Именно в греческой математике мы встречаем изложение знаний в виде теорем: “дано — требуется доказать — доказательство”. Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь мы находим только нормативные рецепты решения задач, излагаемые по схеме: “Делай так!”... “Смотри, ты сделал правильно!”

Характерно, что разработка в античной философии методов постижения и развертывания истины (диалектики и логики) протекала как отражение мира сквозь призму социальной практики полиса. Первые шаги к осознанию и развитию диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на народном собрании). Что же касается логики, то ее разработка в античной философии началась с поиска критериев правильного рассуждения в ораторском искусстве и выработанные здесь нормативы логического следования были затем применены к научному рассуждению.

Применение образцов теоретического рассуждения к накопленным на этапе преднауки знаниям математики постепенно выводили ее на уровень теоретического познания. Уже в истоках развития античной философии были предприняты попытки систематизировать математические знания, полученные в древних цивилизациях, и применить к ним процедуру доказательства. Так, Фалесу, одному из ранних древнегреческих философов, приписывается доказательство теоремы о равенстве углов основания равнобедренного треугольника (в качестве факта это знание было получено еще в древнеегипетской и вавилонской математике, но оно не доказывалось в качестве теоремы). Ученик Фалеса Анаксимандр составил систематический очерк геометрических знаний, что также способствовало выявлению накопленных рецептов решения задач, которые следовало обосновывать и доказывать в качестве теорем.

Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным образом мироздания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения ключом к пониманию мироустройства. И это создавало особые предпосылки для возникновения теоретического уровня математики. Задачей становилось изучение чисел и их отношений не просто как моделей тех или иных практических ситуаций, а самих по себе, безотносительно к практическому применению. Ведь познание свойств и отношений чисел теперь представало как познание начал и гармонии космоса. Числа представали как особые объекты, которые нужно постигать разумом, изучать их свойства и связи, а затем уже, исходя из знаний об этих свойствах и связях, объяснить наблюдаемые явления. Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений (познания, привязанного к наличному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций новые, осуществляет прорыв к новым формам опыта, открывая неизвестные ранее вещи, их свойства и отношения.

В пифагорейской математике, наряду с доказательством ряда теорем, наиболее известной из которых является знаменитая теорема Пифагора, были осуществлены важные шаги к соединению теоретического исследования свойств геометрических фигур со свойствами чисел. Связи между этими двумя областями возникающей математики были двухсторонними. Пифагорейцы стремились не только использовать числовые отношения для характеристики свойств геометрических фигур, но и применять к исследованию совокупностей чисел геометрические образы.

Разработка теоретических знаний математики проводилась в античную эпоху в тесной связи с философией и в рамках философских систем. Практически все крупные философы античности — Демокрит, Платон, Аристотель и др. — уделяли огромное внимание математическим проблемам. Они придали идеям пифагорейцев, отягощенным многими мистико-мифологическими наслоениями, более строгую рациональную форму. И Платон, и Аристотель, хотя и в разных версиях, отстаивали идею, что мир построен на математических принципах, что в основе мироздания лежит математический план. Эти представления стимулировали как развитие собственно математики, так и ее применение в различных областях изучения окружающего мира. В античную эпоху уже была сформулирована идея о том, что язык математики должен служить пониманию и описанию мира. Как подчеркивал Платон, “Демиург (Бог) постоянно геометризирует”, т.е. геометрические образцы выступают основой для постижения космоса. Развитие теоретических знаний математики в античной культуре достойно завершилось созданием первого образца научной теории — евклидовой геометрии. В принципе ее построение, объединившее в целостную систему отдельные блоки геометрических задач, решаемых в форме доказательства теорем, знаменовали формирование математики в особую, самостоятельную науку.

Вместе с тем в античности были получены многочисленные приложения математических знаний к описаниям природных объектов и процессов. Прежде всего это касается астрономии, где были осуществлены вычисления положения планет, предсказания солнечных и лунных затмений, предприняты смелые попытки оценить размеры Земли, Луны, Солнца и расстояний между ними (Аристарх Самосский, Эратосфен, Птолемей). В античной астрономии были созданы две конкурирующие концепции строения мира: гелеоцентрические представления Аристарха Самосского (предвосхитившие последующие открытия Коперника) и геоцентрическая система Гиппарха и Птолемея. И если идея Аристарха Самосского, предполагавшая круговые движения планет по орбитам вокруг Солнца, столкнулась с трудностями при объяснении наблюдаемых перемещений планет на небесном своде, то система Птолемея, с ее представлениями об эпициклах, давала весьма точные математические предсказания наблюдаемых положений планет Луны и Солнца. Основная книга Птолемея “Математическое построение” была переведена на арабский язык под названием “Аль-магисте” (великое), и затем вернулась в Европу как “Альмагест”, став господствующим трактатом средневековой астрономии на протяжении четырнадцати веков.

В античную эпоху были сделаны также важные шаги в применении математики к описанию физических процессов. Особенно характерны в этом отношении работы великих эллинских ученых так называемого александрийского периода (около 300—600 гг. н э.) — Архимеда, Евклида, Герона, Паппа, Птолемея и др. В этот период возникают первые теоретические знания механики, среди которых в первую очередь следует выделить разработку Архимедом начал статики и гидростатики (развитая им теория центра тяжести, теория рычага, открытие основного закона гидростатики и разработка проблем устойчивости и равновесия плавающих тел и т.д.). В александрийской науке был сформулирован и решен ряд задач, связанных с применением геометрической статики к равновесию и движению грузов к наклонной плоскости (Герон, Папп); были доказаны теоремы об объемах тел вращения (Папп), открыты основные законы геометрической оптики — закон прямолинейного распространения света, закон отражения (Евклид, Архимед).

Все эти знания можно расценить как первые теоретические модели и законы механики, полученные с применением математического доказательства. В александрийской науке уже встречаются изложения знаний, не привязанные жестко к натурфилософским схемам и претендующие на самостоятельную значимость.

До рождения теоретического естествознания как особой, самостоятельной и самоценной области человеческого познания и деятельности оставался один шаг. Оставалось соединить математическое описание и систематическое выдвижение тех или иных теоретических предположений с экспериментальным исследованием природы. Но именно этого последнего шага античная наука сделать не смогла.

Она не смогла развить теоретического естествознания и его технологических применений. Причину этому большинство исследователей видят в рабовладении — использовании рабов в функции орудий при решении тех или иных технических задач. Дешевый труд рабов не создавал необходимых стимулов для развития солидной техники и технологии, а следовательно, и обслуживающих ее естественнонаучных и инженерных знаний.
Default FixSim_112007